
CNT 4603: Scripting – Windows PowerShell – Part 1 Page 1 Dr. Mark Llewellyn ©

CNT 4603: System Administration

Fall 2012

Scripting – Windows PowerShell – Part 1

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 4078-823-2790

 http://www.cs.ucf.edu/courses/cnt4603/fall2012

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 2 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• A shell is software that provides a customized interface

designed for executing commands or scripts. (The term

originated from OS nomenclature where the outer layer of a

layered architecture OS was the interface between the user

and the kernel of the OS.)

• Most OS shells generally fall into one of two categories:

command-line and graphical . Command-line shells provide a

command-line interface (CLI) to the OS, while graphical shells

provide a graphical user interface (GUI).

• In either category the primary purpose of the shell is to invoke

or “launch” other programs. In most modern environments,

shells frequently have additional capabilities such as viewing

the contents of directories.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 3 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• Windows PowerShell is a command-line interface (CLI).

• Two important features of PowerShell are scripts and cmdlets.

• A script is a file of commands that is run when you execute or

invoke the script.

• A cmdlet (short for command-let, its pronounced like the long

version) is a specialized (lightweight – they are technically

instances of .NET Framework classes and are not stand-alone

executables) command for completing common tasks in the

PowerShell environment.

• There are about 130 built-in cmdlets already defined in

PowerShell and you can also define (create) your own custom

cmdlets as well as import third-party cmdlets.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 4 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• Windows PowerShell is particularly well suited for situations

in which there are multiple servers and it is more efficient to

manage them using a consistent set of scripts.

• It is also ideal for managing servers with the Application

Server role installed in situations where the applications need

to be configured the same way and regular updates are applied.

• Windows Server 2008 comes with PowerShell and it can be

installed via the Server Manager (it also comes with Windows

7) and it can be easily downloaded into older server versions.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 5 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• Some of the more common server administration tasks that can

easily be handled through PowerShell include:

– Managing files and folders (directories).

– Managing network tasks.

– Managing fixed and removable storage devices.

– Configuring printing services.

– Managing software applications and updates.

– Managing Terminal Services.

– Managing server services and features.

– Managing Web server services

– Working with the system registry.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 6 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• PowerShell is not installed by default in Server 2008 (although it

should be in Server 2008 R2 editions).

• To install PowerShell from the Server Manager:

– Scroll down to the Features Summary.

– Click Add Features.

– Under Features, scroll to find Windows PowerShell and check its box.

– Click Next and then click Install.

– Click Close.

– Close the Server Manager.

• The next few screen shots step you through this simple process.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 7 Dr. Mark Llewellyn ©

Click

Here

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 8 Dr. Mark Llewellyn ©

1. Check the Windows

PowerShell checkbox.

2. Then click Next.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 9 Dr. Mark Llewellyn ©

Click Install

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 10 Dr. Mark Llewellyn ©

Click Close after successful

installation

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 11 Dr. Mark Llewellyn ©

Back in Server Manager, the

new feature lists under

the installed features on

this server.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 12 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• Once you’ve installed PowerShell on the server, you’re

reading to take advantage of some of the cmdlets.

• With PowerShell installed, you should be able to find it on the

server under the Start menu, click All Programs, click

Accessories, Click Windows PowerShell, and Windows

PowerShell should be there (see the next page).

– Note: there will also be a Windows PowerShell ISE, which is the

Integrated Scripting Environment. We’ll look at this later.

• Once you click on Windows PowerShell, you should see a

screen like the one shown on page 14.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 13 Dr. Mark Llewellyn ©

You’ll find PowerShell under

the Accessories list from

the Start, All Programs

listing

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 14 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

This is the default

appearance with the

window maximized. To

change this setting see

pages 43-44.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 15 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 16 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• To view the files in the current folder (the default folder will be

the Users/Administrator folder), one page of files at a time, enter

the command:

 dir | more

• Press Enter after typing in the command (pressing the spacebar

will give you the next page if there is one – probably not on our

servers, since we don’t have much out there yet).

• What you’re doing here is executing the directory command and

piping its output through to the more command which displays

input one page at a time.

• The next page shows the execution of this command on one of

my virtual servers.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 17 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 18 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• To get a listing of the services currently running on your

server, enter the command get-service, at the command

prompt. A partial listing of the output of this cmdlet is shown

on page 19.

• To view a listing of all the currently defined cmdlets, enter the

command get-command | more, at the command prompt.

Here you will see the cmdlets one screen at a time, so press the

spacebar to advance to the next screen. Simply repeat this

until you’ve seen all the pages, or alternatively, press q, to

quite and exit back to the command line if you don’t want to

view all the pages. This command is illustrated on page 20.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 19 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 20 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 21 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• One big plus of PowerShell is consistency. With many shells,

the commands can vary in complexity; however, given the

object-oriented nature of PowerShell, most cmdlets are fairly

basic in their usage and are highly consistent.

• The power comes is using combinations of cmdlets.

• The cmdlets naming convention is for the first part to be a verb

(for example, get-, format-, out-, or set-) that dictates

what the cmdlet does (such as get information, format

information, direct information, or set information).

• The next part is a noun, which specifies what is being acted

on.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 22 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• Everything is based around this verb-noun pair; for example,

get-process w* retrieves information about processes

whose names start with the letter w, as shown below.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 23 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• Although the output, as shown on the previous page, is tabular,

this is not how the data is returned in PowerShell. It’s referenced

in its .NET object format, but the default display format is a table.

• You can easily output in other formats, such as a list by piping the
output of the get-process cmdlet to the format-list

cmdlet.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 24 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• Probably the greatest cmdlet (as well as the best verb-noun

combination) that you’ll ever use is get-help.

• On its own, get-help gives you just basic information, but it

can show you the names of other cmdlets, so you can detailed

help on them.

• For example, get-help format-* will list all the cmdlets

starting with format- to help you see the options available to

you.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 25 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 26 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• In addition to getting detailed help about a cmdlet, use the get-

help command with the name of the cmdlet followed by –

detailed to get all available help.

• Add –full to just view a portion of the help, or add –

examples to have examples of use listed for you.

• Note that when the –detailed option is selected, the

examples are also listed.

• The following screen shots illustrates these cases. Note that the

detailed case requires several pages of output and I only show

the first one here. The same is often true for full and examples.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 27 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 28 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 29 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• We’ve already seen the cmdlet get-command. If you want to

see all the commands that begin with a certain verb, such as

get, issue the command get-command –verb get.

• The output of this command is shown on the next page, but you

might want to experiment a bit and try out some other options.

For example, try listing all of the commands that use the verbs

add or new.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 30 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 31 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• Now that you’ve have some basic familiarity with PowerShell,

let’s do something more useful with it… let’s try starting and

stopping a process.

– What you might want to do before going any further is first run the
get-help *-process to list all the available commands that deal

with a process. You should discover that there are five of these cmdlets.

• What we’re going to do over the next few pages is start Notepad

as a process running on our server and then use it and then stop

the process. This will be illustrated by a sequence of screen

shots from the server illustrating what is happening.

• First off, we’ll see a screen shot of the current processes on the

server. Notice that its alphabetically listed and Notepad is not

running (Notepad++ is on my server).

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 32 Dr. Mark Llewellyn ©

Currently running

processes do not

include Notepad.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 33 Dr. Mark Llewellyn ©

Enter the command: start

notepad on the command

line and press enter.

Notepad immediately

launches.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 34 Dr. Mark Llewellyn ©

Reissue the command
get-process and notice

that now Notepad is listed.

Notice too in the tool tray

that the you can still see

Notepad is there.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 35 Dr. Mark Llewellyn ©

Notice on the previous

screen shot that the id

process id of the Notepad

process was 3680. This is

used in this version of the

stop-process command to

identify the process to be

stopped.

Reissue the command get-

process and notice that

now Notepad is no longer

listed.

Notice too in the tool tray

that Notepad is no longer

there.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 36 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• You can also do a fair amount of customization of the

PowerShell interface.

• A common system administrator technique is to place scripts in

a folder on a server that is frequently backed up. Thus, you

might want PowerShell to open up in this default directory.

• To illustrate doing this, let’s create a subdirectory in the

C:\Users\Administrators folder named MyScripts. Then we’ll

configure PowerShell to open in this folder.

• To make some of these repetitive steps easier to accomplish, I

also created a short-cut to PowerShell and put it on the start

menu.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 37 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• To set-up the default folder for PowerShell to open in, right

click the short-cut to PowerShell and select Properties.

• Locate the ShortCut tab on the Properties dialog box and in the

Start in: text box enter the path to the new directory

“C:\Users\Administrator\MyScripts”, then click OK.

• Restart PowerShell and you should now see the new default

directory loaded.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 38 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 39 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 40 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 41 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• You can also change the text size and the screen foreground and

background colors and many other features including hot-keys

and so on in PowerShell.

• The next part simply shows you how to reset the text size and

the screen colors to customize your PowerShell environment.

• Again going through the desktop shortcut to PowerShell, right

click on the short cut and select Properties. Locate the Font tab

on the Properties dialog box and reset the Window size to 8x8

(the default is 8x12), then click OK.

• Restart PowerShell and you should now see the new default

screen size and font size for the window.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 42 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 43 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

• To change the screen colors for PowerShell, repeat the process

but select the Colors tab.

• Again going through the desktop shortcut to PowerShell, right

click on the short cut and select Properties. Locate the Colors

tab on the Properties dialog box and reset the colors to your

liking, then click OK.

• Restart PowerShell and you should now see the new colors

appear.

CNT 4603: Scripting – Windows PowerShell – Part 1 Page 44 Dr. Mark Llewellyn ©

Scripting – Windows PowerShell

